Flatness of Conjugate Reciprocal Unimodular Polynomials

نویسنده

  • Tamás Erdélyi
چکیده

A polynomial is called unimodular if each of its coefficients is a complex number of modulus 1. A polynomial P of the form P (z) = ∑n j=0 ajz j is called conjugate reciprocal if an−j = aj , aj ∈ C for each j = 0, 1, . . . , n. Let ∂D be the unit circle of the complex plane. We prove that there is an absolute constant ε > 0 such that max z∈∂D |f(z)| ≥ (1 + ε) √ 4/3m , for every conjugate reciprocal unimodular polynomial of degree m. We also prove that there is an absolute constant ε > 0 such that There is an absolute constant ε > 0 such that Mq(f ) ≤ exp(ε(q − 2)/q) √ 1/3m, 1 ≤ q < 2 , and Mq(f ) ≥ exp(ε(q − 2)/q) √ 1/3m, 2 < q , for every conjugate reciprocal unimodular polynomial of degree m, where

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Far Is an Ultraflat Sequence of Unimodular Polynomials from Being Conjugate-reciprocal?

In this paper we study ultraflat sequences (Pn) of unimodular polynomials Pn ∈ Kn in general, not necessarily those produced by Kahane in his paper [Ka]. We examine how far is a sequence (Pn) of unimodular polynomials Pn ∈ Kn from being conjugate reciprocal. Our main results include the following. Theorem. Given a sequence (εn) of positive numbers tending to 0, assume that (Pn) is a (εn)-ultraf...

متن کامل

Unramified Reciprocal Polynomials and Coxeter Decompositions

We classify certain automorphisms of an even unimodular lattice L with fixed irreducible and unramified characteristic polynomial. The question which automorphisms are conjugate to their inverses in the orthogonal group of L is investigated. 2000 Math. Subj. Class. 11H56, 11R06, 20F55.

متن کامل

AVERAGE MAHLER’S MEASURE AND Lp NORMS OF UNIMODULAR POLYNOMIALS

A polynomial f ∈ C[z] is unimodular if all its coefficients have unit modulus. Let Un denote the set of unimodular polynomials of degree n−1, and let Un denote the subset of reciprocal unimodular polynomials, which have the property that f(z) = ωzn−1f(1/z) for some complex number ω with |ω| = 1. We study the geometric and arithmetic mean values of both the normalized Mahler’s measure M(f)/ √ n ...

متن کامل

Trigonometric Polynomials with Many Real Zeros and a Littlewood-type Problem

We examine the size of a real trigonometric polynomial of degree at most n having at least k zeros in K := R (mod 2π) (counting multiplicities). This result is then used to give a new proof of a theorem of Littlewood concerning flatness of unimodular trigonometric polynomials. Our proof is shorter and simpler than Littlewood’s. Moreover our constant is explicit in contrast to Littlewood’s appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015